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Recent measurements on thin metal films suggest a pulse model of resistance 
fluctuations in which scale similarity and power law spectra are only approxi- 
mate. We show that such a pulse model is consistent with stationary Gaussian 
resistance fluctuations. This is to be contrasted with the phenomenological 
behavior of fluctuations near phase transitions and in turbulent fluids where the 
fluctuations are non-Gaussian, but exhibit scale similarity of deep physical 
.origin. We then critically examine other tests of the Gaussian behavior of the 
fluctuating voltage V(t.) across a resistor. These include the relaxation of the 

Conditional mean {V(t) V(O)L-~o ), and the spectrum of V2(t). We consider 
also the questiori of time reversal invariance. We further ask under what 
conditions I / f  noise can be measured through fluctuations of the Johnson noise 
power with no applied voltage. We emphasize that this possibility, suggested and 
observed by Voss a~nd Clarke, requires that V(t) contain a non-Gaussian 
component. 

KEY WORDS: 1I f  noise; scale similarity; resistance fluctuations; non- 
Gaussian effects; equilibrium voltage fluctuations; stochastic models. 

1, I N T R O D U C T I O N  

A var ie ty  of phys ica l  sys tems exhib i t  f l uc tua t i ons  whose  power  s p e c t r u m  

goes a p p r o x i m a t e l y  as 1 I f  d o w n  to the lowest  f requencies ,  f ,  access ible  to 
exper imen t .  Some m a t h e m a t i c a l  desc r ip t ion  is possible ,  b u t  there  is little 
phys ica l  u n d e r s t a n d i n g .  A good  i n t r o d u c t i o n  a n d  br ief  review has recen t ly  

b e e n  g iven  b y  Press. (1) T h e  s imples t  a n d  best  s tud ied  exam ple  of this " l / f  
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noise" is the low-frequency voltage fluctuations in conducting materials 
through which a constant current is flowing. The ubiquity of the phenome- 
non, and its similarity in a wide range of materials, has suggested that there 
might be a universal underlying mechanism. ~2) The apparent universality of 
1If noise might, however, be a rather misleading feature. Not only can 
many physical mechanisms lead to a given power spectrum, but there is 
more to a random process than its power spectrum. To discriminate among 
possible physical mechanisms it can be useful to consider more refined 
statistical aspects of the resulting noise process. In this paper we concen- 
trate on this aspect of the problem, which has received little attention in the 
1/f noise literature. 

We first contrast statistical properties of 1 / f  noise with two other types 
of physical problems where power law spectra are observed: critical phe- 
nomena and turbulence. The differences which show up at the statistical 
level (and the possibly only approximate scale similarity of 1If noise) 
should make one beware of the analogies which a superficial comparison of 
the power spectra might suggest. 

In Section 3 we comment on the presumed Gaussian behavior of 
resistance fluctuations, and various tests of this behavior. We assume that 
an experiment is probing resistance fluctuations when the observed spec- 
trum of voltage fluctuations is proportional to the square of the constant 
applied dc voltage. The question of "time reversal invariance" or "detailed 
balance" can also be formulated in statistical terms. We discuss the 
experimental evidence concerning this question. 

Other measurements observe 1If noise through slow fluctuations in 
the Johnson noise power with no applied voltage/3~ In Section 4 we discuss 
these "equilibrium" measurements, which require that the equilibrium 
voltage fluctuations be non-Gaussian. We exhibit the correlation function 
which is measured, state the conditions necessary for the effect to be 
observable, and discuss how non-Gaussian equilibrium voltage fluctuations 
may be consistent with Gaussian resistance fluctuations. 

We think that this collection of remarks should bring to the reader's 
mind some connections which have not often been appreciated, and we 
also hope it will clear up a few points which seem to have been misunder- 
stood in the past. 

2. 1 / f  NOISE VERSUS OTHER PHYSICAL PROBLEMS WITH 
SCALE SIMILARITY 

Consider a stationary random process V(t) with mean  zero and 
spectrum 

s v  = c o )  - o ( 1 )  
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between a low-frequency cutoff co 0 and a high frequency cutoff ~01. The 
cutoffs are widely separated and assumed due to known physical causes. 
We concentrate our attention on the frequency region ~0 << co << wt where 
Eq. (1) is assumed to apply. We call a random process with these properties 
scale similar. (We use this terminology to distinguish from the well- 
developed mathematical theory of self-similar random processes. If we 
introduce high- and low-frequency cutoffs, we need no new probability 
theory.) If V(t) is Gaussian, then its physical content is fully specified by 
the scaling exponent a. If not we must give further information to charac- 
terize it completely. Many problems of basic interest in statistical physics 
can be described in terms of such scale similar random processes. 

As a first example consider density fluctuations near a gas-liquid 
critical point. We consider the wave number (k) spectra of equal time 
spatial correlation functions. Most theoretical descriptions are not mani- 
festly probabilistic, but the probabilistic approach has been developed, (4) 
and it leads to a description of critical fluctuations as a scale similar 
random process. The high-wave-number cutoff is determined by a molecu- 
lar length a, and the low-wave-number cutoff by a dynamically determined 
correlation length ~ which diverges at the critical point. The scale similarity 
is most directly manifest in the spectrum of density fluctuations which goes 
as k n-2 in the range 

~-1 << k<< a - I  

The critical exponent ~ is in principle directly observable. A local energy 
variable, quadratic in the density, also shows critical fluctuations. The 
spectrum of energy fluctuations in the same wave number range goes as 
k-Z, where z can be related to the usual critical exponents. The fluctuating 
density field defines a non-Gaussian random process. A characteristic 
signature of this non-Gaussian behavior is that the exponents ~ and z are 
not simply related. 

As a second example consider fully developed hydrodynamic turbu- 
lence. Again we consider spatial fluctuations. Here the velocity field of the 
fluid is the random process, and the detailed statistical behavior is directly 
observable. The underlying dynamical theory is the Navier-Stokes equa- 
tions of hydrodynamics, but a basic understanding of the phenomena 
starting from these equations is still lacking. There is, however, a reason- 
ably good phenomenological understanding based on probabilistic descrip- 
tion, (5) and we are dealing once more with a scale similar random process. 
In this case the low-wave-number cutoff is determined by the energy 
containing length scale of the flow, and the high-wave-number cutoff by 
the Kolmogorov microscale determined by the direct effects of viscous 
dissipation. The basic dynamical variable is the vorticity. The scaling 
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exponent determining the spectrum of its fluctuations is directly related to 
the famous Kolmogorov 5/3 law for the energy spectrum. More recent 
theory and experiment suggest that the process is non-Gaussian. This shows 
up most directly in the fluctuation spectrum of the local energy dissipa- 
tion, (5) which is a variable quadratic in the local vorticity. This spectrum 
defines a universal exponent for which theoretical calculations do not yet 
exist, but the random process shows remarkable similarities at the phenom- 
enological level to the density fluctuations near a critical point. (6) 

By contrast consider low-frequency voltage fluctuations. Observations 
in agreement with Eq. (1), over a frequency range, with 0.9 ~< c~ <~ 1.4 are 
sometimes taken as a definition of 1 / f  noise. For example, equilibrium 
temperature fluctuations lead to low-frequency noise which is Gaussian 
with a spectrum determined by the dynamics of heat diffusion. (7) Although 
these fluctuations can appear scale similar when measured over a narrow 
enough frequency range, they do not correspond in any deep physical sense 
to a scale similar random process, except in the case of certain singular 
geometries, (8~ or in general at high frequencies. It is generally agreed that 
most observed 1 / f  noise is not due to equilibrium temperature fluctuations. 
However, even "true" 1/ f  noise may not really be scale similar. 

Recently Dutta, Dimon; and Horn (% have analyzed the temperature 
dependence of Sv(~O, T) in metal films, and have suggested that a thermally 
activated process with a broad distribution of activation energies dominates 
the low frequency noise. They do not give an explicit physical mechanism, 
but suggest a scaling law by which the temperature and frequency depen- 
dence of Sv(,O, T) can be related. Their basic result can be rephrased in the 
form 

[r r ) / k r  ] = D[ - krlog(o~ro) ] (2) 

where r 0 is a microscopic time of the order of 10-14 see, and the function 
D(x) has a broad maximum at Xm, x ~ 1 eV. The function D(x) depends on 
material, and to some extent also on film thickness. The value of Xma ~ 
suggests some eonnectiola to the dynamics of defects in the films. The 
effective scaling exponent 

0[logSv(,0, r ) ]  
u(w, T) = - a(logw) (3) 

varies fairly strongly with temperature, but only very weakly with fre- 
quency. The random process described by Eq. (2) is not scale similar, but 
imitates a scale similar process when measured over a frequency range 
which in practice may be quite wide. 

It thus appears to us that the existence of "true" scale similar 1 / f  noise 
has not been established beyond doubt. A lot of the "unexplained" 1I f  
noises may still be only approximately scale similar. In 1 / f  noise we often 
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see power law spectra over several decades in frequency, but have no 
theoretical reason to expect scale similarity. This should be contrasted with 
the situation in critical phenomena and turbulence where the observational 
basis for scale similarity is weaker, but its theoretical basis is quite sound. 

Another difference with the above-mentioned problems is that 1If 
noises are probably in most instances Gaussian processes. This certainly 
appears to be the case for resistance fluctuations due to temperature 
fluctuations. What about the defect mechanism of Dutta, Dimon, and 
Horn? Is it likely to lead to Gaussian resistance fluctuations? In Appendix 
A, we consider a pulse model for the fluctuating resistance. Such pulse 
models are not new, (~~ and we do not obtain any new results for the 
spectrum SR (~o). We can, however, explicitly look at higher-order statistical 
quantities. If the average number of pulses present at any time is large, then 
we find by standard central limit theorem arguments that R(t) is consistent 
with a Gaussian process. We thus suggest that l / f  noise in metal films 
defines a random process which is Gaussian but not scale similar. 

The above conclusion may itself not be universal. There are some 
older data on carbon resistors which show power law behavior over many 
decades. (11) Deviations from Gaussian behavior are also seen, but these are 
strongly sample dependent, and suggest that other non-Gaussian noise 
mechanisms are mixed with the "true" 1If noise in some samples. (11'12) 
Carbon resistors are not, however, very "clean" physical systems. As far as 
we know there are no measurements of the Gaussian property of 1 / f  noise 
for metal films, metal whiskers, or any other simpler physical systems where 
one might expect 1/f noise to have an "intrinsic" origin. 

Finally, we recall that we have assumed a stationary random process. 
We have done this strictly for simplicity in the absence of any compelling 
evidence to the contrary. If nonstationary effects appear at times longer 
than experimentally accessible, then the observed process can still be 
described as stationary. If the process is stationary, we can assume that a 
low-frequency cutoff exists, but is not accessible in a reasonable experimen- 
tal time. We then avoid any problems associated with an infinite variance. 
If the mechanism of the noise source involves defect dynamics or other 
slow forms of structural change, there is no special difficulty in obtaining 
very long characteristic times. Whether 1If noise is stationary or not may, 
however, be of importance to understand the physical mechanism involved. 

3. GENERAL PROPERTIES OF 1If NOISE: GAUSSIAN BEHAVIOR 
AND TIME REVERSAL SYMMETRY 

How can the Gaussian property of 1 / f  noise sources be tested experi- 
mentally? The simplest test is to measure the single-time probability distri- 
but ionp(V) .  This can rule out "Gaussianity," but there are many examples 



258 Nelkin and Tremblay 

in statistical physics of random processes which are not Gaussian, but have 
Gaussian single-time distributions (for example, the velocity of an atom in 
a classical fluid at thermal equilibrium(~3)). At the level of the two-time 
distribution, the most direct test involves the moments 

D~(t )= ( [  V ( t ) -  V(O)I n) 

sometimes called the structure functions of the process. If the two time 
distribution is Gaussian, we have, for example, 

D4(t ) = 3[D2(t)] 2 

which is equivalent to the frequently quoted property of a stationary 
Gaussian process 

(V2(0) V2(t)) = 2(V(0) V(t))2+ (V2(0)) 2 (4) 

This has not been directly checked for 1If noise sources, but an indirect 
check has been obtained by Stoisiek and Wolf, ~14) who measured the 
variance of the random variable 

1 fo~eXp(_ t ' /T)  V2(t - t')dt' (5) . T (  t) = - f  

as a function of the averaging time T. They found consistency with Eq. (4) 
for a carbon resistor and a bipolar transistor. In our opinion the direct 
measurement of (V2(0)V2(t)), or the essentially equivalent measurement 
of Stoisiek and Wolf, are the most natural tests of the Gaussian property of 
V(t). Needless to say, one can never check whether a process is strictly 
Gaussian since this implies a measurement of an infinite number of 
higher-order correlation functions. However, for practical purposes, if 
(V2(0) V2(t)) satisfies Eq. (4) one can say that the process is Gaussian. It is 
interesting that in the example of turbulent fluid flow discussed earlier, Eqs. 
(4) and (5) are just the quantities suggested by Kolmogorov (15) as a 
measure of the non-Gaussian nature of the velocity field. In that case the 
local vorticity plays the role of V(t), and its square is the local rate of 
energy dissipation. 

Another possibility to check Gaussian behavior is to study the condi- 
tional mean (V(t)[V(0) = Vo). This function represents the average value 
of the voltage at time t given that at time t = 0 the voltage had the value 
V 0. For a stationary Gaussian process this satisfies the condition ~ ~6) 

( V(t) l V(0) - V0) (V(0) V(t)) 
- ( 6 )  

Vo (v2(0)) 
where the quantities on the right-hand side of this equation are the usual 
correlation functions. In an interesting paper, Voss ~17) has studied the 
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validity of Eq. (6) for a variety of 1If noise sources. He found it satisfied in 
carbon resistors and field effect transistors, but not satisfied in p-n junction 
devices. Equation (6) can be thought of as a kind of linearity condition, and 
Voss suggests that it is a test of the linearity of the underlying noise 
mechanism. This interpretation of Eq. (6) must be qualified. Equation (6) is 
automatically satisfied for any stationary Gaussian process. The Gaussian 
behavior typically arises via the central limit theorem by linear superposi- 
tion of independent events. Nothing is assumed about the microscopic 
dynamics of these individual events which could be nonlinear. For  exam- 
ple, in the pulse model which we discuss in Appendix A, there is no 
physical mechanism assumed for the individual resistance pulses. If one 
looks, however, for a phenomenological description of a process where the 
observable variable obeys a stochastic differential equation with a Gaussian 
noise source, then the "linearity" test of Voss may indeed prove useful in 
deciding whether or not this differential equation is linear. 

Voss has also suggested that checking whether the condition 
(V(t) IV(O) = Vo)= (V( - t ) l  V(0)= g0) is satisfied constitutes a test of 
time reversal invariance for the process. We would like to qualify that 
statement slightly: The correct statement should be that if a process is 
stationary and time reversal invariant, then Voss's condition is satisfied. 
The converse, however, is not true. In Appendix B we show that there exist 
stationary processes which satisfy Voss's condition, but which are not time 
reversal invariant. 

A simple test of time reversal noninvariance is the third-order structure 
function 

o3(t)  = ( [ v( t )  - v (0 ) ]3 )  

This vanishes if there is symmetry between t and - t .  Again time reversal 
invariance is a sufficient but not necessary condition for D 3 to vanish. 
Testing for D 3 ---0 is mathematically an even less stringent test than that 
suggested by Voss, but it may in practice be easier to perform. 

Note that D 3 vanishes for any Gaussian process. This illustrates the 
more general point that any stationary one-variable Gaussian process is 
necessarily time reversal invariant. Such a process is fully determined by its 
correlation function (V(0)V(t)) ,  which is an even function of t by station- 
arity. There has been some confusion on this point in the literature. Press (1) 
has remarked that 1 / f  noise generated by appropriately filtering Gaussian 
white noise could have a different arrow of time depending on whether 
causal or acausal filters are used. This is incorrect since any stationary 
process generated by linear filtering of a stationary Gaussian process is 
itself a stationary Gaussian process. Thus it is necessarily time reversal 
invariant. [To be sure on the question of stationarity we restrict ourselves to 



260 Nelkin and Tremblay 

band-limited 1If noise which can be generated by a nonsingular filter 
G(~o).] Our point can also be seen by a slightly different argument. If G(w) 
is a causal filter, then its complex conjugate G*(w) is the corresponding 
acausal filter. The spectrum of the filtered process is then G(~o)So(~O)G*(~o ) 
for both causal and acausal filtering, where S0(~0) is the spectrum of the 
unfiltered process. Only if the unfiltered process is not Gaussian can the 
causally and acausally filtered processes be distinguished. They will both 
have the same spectrum, but higher-order correlation functions, such as 
D3(t ), can distinguish them. 

4. "EQUILIBRIUM" l / f  NOISE: ON NON-GAUSSIAN EQUILIBRIUM 
VOLTAGE FLUCTUATIONS AND GAUSSlAN RESISTANCE FLUC- 
TUATIONS 

Voss and Clarke (3) have suggested that l / f  voltage fluctuations can be 
observed in "equilibrium" systems without applying a voltage. The average 
Johnson noise power in a frequency band Af below the RC cutoff in a 
capacitive circuit is given by 4kTRAf. They suggest that slow resistance 
fluctuations should modulate this noise power. Similarly the noise in the 
band Af above the RC knee should be proportional to R -  1A f, and should 
show slow fluctuations. The total noise power integrated over all frequen- 
cies should, however, not depend on the resistance and should not exhibit 
slow fluctuations. They confirmed this prediction experimentally in small 
semiconductor and metal films. The same effect has been seen in carbon 
resistors by Beck and Spruit. (18) 

These experiments show that 1If noise is not caused by the applied 
voltage, but they do not show that it is a thermal equilibrium phenomenon. 
In many cases the noise mechanism may be associated with very slow 
structural fluctuations in the material. These are likely to involve subtle 
forms of metastability in the state of the material which should be distin- 
guished from true thermodynamic equilibrium. 

In terms of V(t) as a random process the above effect is manifestly 
non-Gaussian since a variable quadratic in V(t) exhibits slow fluctuations 
which do not appear in (V(0)V(t)). From the remarks in the first para- 
graph of this section, we can see that the effect is more subtle than we have 
discussed earlier, since the slow fluctuations will modify only slightly the 
simplest four-voltage correlation function (V2(O)V2(t)). To have observ- 
able effects, one must look at 

(V(O) V(6') V(t) V(t + 6 )) (7) 

where 6 and 6' are not zero but are much smaller than the time scale t of 
the slow fluctuations (see also Appendix C). 
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Beck and Spruit (18) have discussed the conditions for observability of 
the effect discovered by Voss and Clarke. (3) In Appendix C, we present 
what we believe to be a simpler and clearer derivation of which correlation 
function is measured as well as the conditions for observability of the 
effect. In particular we calculate the level of the background due to 
Gaussian fluctuations. We find that this background is equal to 1 /Af  where 
Af is the bandwidth of the Johnson noise sampled by the experiment. 

The Voss-Clarke result is intuitively plausible, and has some experi- 
mental confirmation, but there is no microscopic theoretical justification. In 
the case that the slow fluctuations are due to equilibrium temperature 
fluctuations, we have a basic physical understanding and should be able to 
achieve a more microscopic description of V(t) as a random process. This 
is quite difficult, however, from a systematic point of view since both the 
Johnson noise and temperature fluctuation noise are of the same order in 
an expansion in f~-1 where ~2 is the volume of the system. The fluctuations 
in the band-limited Johnson noise power are of higher order in ~ -  1, and no 
systematic theory exists which keeps all terms of this higher order. A 
reasonable physical guess can be made, however, as to the dominant 
higher-order effects, and this leads to a modified Langevin equation in 
which the slow resistance fluctuations modulate both the friction constant, 
and the intensity of the noise source. We have developed this description in 
some detail, but will defer its presentation for another paper. 

We can summarize our preliminary results as follows. We agree with 
Voss and Clarke with one minor difference. For equilibrium temperature 
fluctuations, the amplitude of the noise power fluctuations is proportional 
to (fiT0) 2 rather than (1 _+ fiT0) 2, where fl = R - l d R / d T .  In practice this is 
irrelevant since the effect is only observable if/3 is very large. We have also 
calculated the corrections from the slow resistance fluctuations to the 
Johnson noise spectrum Sv(r ). These are very small as expected. Neverthe- 
less, our model has the virtue of showing how a small nonlinearity in the 
equilibrium equations of motion for V(t) leads to its non-Gaussian behav- 
ior for the four-point equilibrium correlation and at the same time to a 
Gaussian behavior in leading order in the nonequilibrium situation. 

5. C O N C L U S I O N  

We have clarified a variety of questions concerning the statistical 
description of 1 / f  noise. We have suggested that in clean well-characterized 
physical systems this noise is not likely to have any scale similarity of deep 
physical origin, but it is likely to be Gaussian. In metallic systems (9) the 
most plausible physical mechanism involves defect migration or other slow 
forms of structural fluctuation. There are then no special difficulties with 



262 Nelkin and Trernblay 

the long time scales involved, but there are also no detailed mechanisms 
known which can account for the observations. The main thrust of future 
research in this area must be experimental, particularly in dealing with 
well-characterized samples whose material properties can be varied. In such 
an experimental program it would be valuable to test the scale similarity 
and Gaussian property of the noise process, and to relate them to material 
properties. This requires precise measurements of the spectrum over a wide 
frequency range, and more attention to higher-order correlation functions 
in order to test the Gaussian property. 

APPENDIX A: HIGHER-ORDER STATISTICS OF PULSE MODELS 

Pulse models have been considered, for example, by Halford. ~1~ 
Consider a sequence of N pulses in the interval - T/2  <<. t I <~ T/2,  and 
take N I T  = W = const. The onset of each pulse is described by a set of 
random variables si ~ which follow a Poisson process. 4 Then, let the resis- 
tance of the sample be 

"rma x NT 

R(t')  = ~ • f , ( t ' -  s?) (A1) 
"r ~ ' rmin i = 1  

where f ,(t) is a function which is parametrized by the parameter �9 which 
describes the interval of time during which the function f ,(t) differs from 
zero. Let N be the total number of random variables s 7 in the interval 
- T /2  <<. t' <<. T/2.  Then, 

"rma • 

N r = U (A2) 
T ~ "rmi n 

We interpret the ratio N , / N  as the probability of having a pulse whose 
duration will be r. 

To find higher-order statistics for the random variable defined by Eq. 
(A1), we compute the characteristic function: 

Gq(t) = (exp[ iq(R( t  I + t ) -  R(t l ) ) ]  ) (a3)  

Using Eq. (A1) and the fact that the s] are independent random variables 
we find, using stationarity, that 

"rma x N r 

Gq(t) = 1-I I'[ ( e x p [ i q ( f ~ ( t -  si r) - f , ( - s T ) ) ]  ~ ( A 4 )  
7-= Tmin i= 1 

4For a Poisson system of random points, the occurrence of each point is described by an 
independent random variable. If the Poisson process is stationary, each of these independent 
random variables has a constant probability density [R. L. Stratonovieh, Topics in the Theory 
of Random Noise, Vol. 1 (Gordon and Breach, New York, 1963), pp. 146 and 153]. 
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where the angular brackets are averages over the random variables s 7. For 
a stationary Poisson process, each of the random variables s( has a 
probability distribution, p(s() ds( = (ds( / T). 

For concreteness, we will take 

! if t < 0 
f~(t)= ~ i f 0 < t < ' r  (A5) 

i f t > T  

The specific form of f,(t) comes in the final result in such an inessential 
way that many of our conclusions can certainly be generalized for an 
arbitrary function f,(t).  Using Eq. (A5) in (A4) we find, for t > 0, 

Gq( t)= I-[ II -~ ) + -  | 
T = "Pmin i = l  

[ T iqA~ e-iqA')+ T - - 2 T ] O ( t - - z ) )  (A6) 
+ + - - - f - -  

If we assume that (t/T)N~ << N~ and take the limit N~ ~ oo, T--~ oo keep- 
ing N~ T =-- W constant, we obtain, for Tmi n ~ t ~ 'P . . . .  

Gq(t) = exp - 2 W  "r~-(1 - 
5- ~ "rmi n 

. . . .  

+ ~=tt-~(1-cosA~q) (17) 

As mentioned before we should interpretp(z) = N~/N as the probability of 
having pulses of length ~-. 

Following closely the arguments which are used for the standard proof 
of the central limit theorem, we can deduce from Eq. (A7) that in the limit 
where W ' T m i  n is large, the process becomes Gaussian. Indeed, if Wq-mi n is 
large, the coefficient of each term of a power series in q for Gq(t) is 
dominated by the contribution from the term of order q2 in the exponen- 
tial. This means that to order (W~'min)-1 only the first cumulant need be 
used to compute all correlation functions, hence the process is Gaussian. In 
the Gaussian limit Eq. (17) becomes 

Gq(t)=exp{- [ ~mm d~'+ } (18) wqm ~lA2p(q.)~. ff A2p(~)td~] . . . .  

The first cumulant is given by the exponent in Eq. (A8) and it will decay 
logarithmically in time ( l / f  noise) if Tmi n ~ t ~ Tma x and 

1 (A9)  



264 Nelkin and Tremblay 

This condition has been emphasized by Halford. < 10) Note that we recover 
the McWorther model, p ( T ) ~  l /T ,  if we notice that in that model, each of 
the pulses has a correlation function normalized to the same value at t = 0 
independent of ~-. This can be achieved in our model only if A 2 ~ I / T  as 
can be seen from considering the coefficient of order q2 of the following 
characteristic function: 

Gq(t) = exp( - 2 W ( 1  - cosA.q)[.rO(t - "r) + tO(T - t )]} (110) 

It is still possible that non-Gaussian features of the process R(t )  could 
appear in multitime correlation functions such as (R( t t )R( t2)R( t3)R( t4) )  �9 
(t I 4= t 2 4= t 3 =/= t4). This question has not yet been examined. 

APPENDIX B: ON MODELS WHICH ARE NOT TIME REVERSAL 
INVARIANT BUT STILL HAVE THE PROPERTY (V( t )  IV(0) = 11o) 

= ( v(- t) l v(0) = v0) 

We will assume that the random variable V can take only a set of N 
discrete values V,. Wc define P2(Vm,t; Vn,O ) the joint probability for 
observing the value V n of the random variable V at time 0 and the value V m 
at a time t later. Wc will assume that the process is stationary; hence P 
depends only on the time difference between the first and the second 
measurements. For definiteness, we shall consider a fixed time difference 
between the measurements and henceforth omit the time label: 

P2(Vm, Vn) -- e2(vm, t; Vn,0) (B1) 

Note that from P2 we can compute the correlation function 

N 

(v ( t )  v(0)) = y~ Vm V. P2(Vm, V. ) (B2) 
n , m  

and the conditional means 

N 

( V(/)l V(0) = V n ) = 2 VmP2(Vm, Vn)PI-I(vn) (B3) 
m 

N 
( V ( t )  = V. I V(O)) = ~ .  vine2( V., V m )e , -~(  V. ) (B4) 

m 

where PI(V.) is the single time probability distribution for V. 
We define the property of time reversal symmetry as follows: 

P2( vi, v+ ) = e2( v+, v,) (Bs) 

If a system has "true" time reversal symmetry, the property (B5) must bc 
obeyed for all values of the time difference and the higher-order joint 
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probability distributions must also obey obvious generalizations of Eq. 
(B5). It is possible that certain systems do not obey time reversal symmetry 
while condition (B5) is still satisfied. For that reason, the condition (B5) is 
sometimes called "detailed balance." 

Note that at this stage, it is already obvious that Voss's condition, 
which applies to an average, is weaker than the requirement of time reversal 
invariance, which is a condition on the full distribution. We will see below 
that if N is large enough indeed more information is contained in Eq. (B5) 
than in Voss's condition. 

Clearly, if time reversal invariance is satisfied [Eq. (BS)], then Eqs. (B3) 
and (B4) are equal (Voss's condition). On the other hand, in general, it 
takes N2 numbers to specify P2(Vi, Vj). There are a few constraints which 
P2 must also satisfy: normalization, 

N 
P2( V,, V m ) = 1 (B6) 

m , n  

and 
N 

~ P2( Vm, 1I.) = P1( V. ) (B7) 
m 

N 

P2( V,,, V,, ) = P,( V,, ) (B8) 
m 

by definition of Pt and P2. Equations (B6)-(B8), however, represent at 
most (2N + l) independent constraints. Even if Eqs. (B3) and (B4) are 
equal for all values of V,, that gives us at most N other independent 
constraints. Thus, for N large enough, we will always be left with enough 
freedom in the remaining N 2 - (3N + l) independent values of P2 to devise 
a process where time reversal symmetry [Eq. (B5)] is not obeyed even 
though Voss's condition and the usual constraints on P2 are satisfied. [Note 
that when Eq. (B5) is satisfied, we are left with only N ( N  + 1)/2 indepen- 
dent elements even before the constraints (B6) to (B8) are applied.] In 
practice, N tends to infinity. 

We do not want to be purists: one will never be able to check whether 
a process is exactly time reversal invariant (or for that matter, whether a 
process is Gaussian) because it would take an infinite number of measure- 
ments on higher-order correlation functions. For practical purposes, a few 
tests to check consistency with time reversal invariance suffice. Equation 
(B5) is one of the conditions which must be satisfied if there is time reversal 
invariance. We find it amusing that Voss's condition is mathematically a 
weaker test of Eq. (B5) than one would have expected, given that it is an 
intuitively satisfying test of time reversal invariance. 
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APPENDIX C: CORRELATION FUNCTION FOR "EQUILIBRIUM" 1/f 
NOISE MEASUREMENT 

This problem has also been studied by Beck and Spruit. ~ E8) Our results 
are equivalent to theirs but our perspective is different. 

Consider the "filtered" Johnson noise voltage, 

f d~ -i,ot (C1) V~0(t) = ~-~e g,oV,~ 

where g~ the "filter" function is peaked around ~ = +_ ~0 0. Proceeding like 
Voss and Clarke we square Eq. (C1) and average over an interval At 
~> 1/~0 0 to obtain the random variable, 

P(t) = V2o(t) = ~  ~ ~ (~o + w')At/2 e 

Note that, 

where 

(e( t ))  = 2sv(, o) AU 

(C2) 

(c3) 

f d~ d~' dw ( V~ V~, V,~ V,_,~)g~g~, g~g, ,o (C7) 
Sp(v)=  2~ 2~r 2~ 

To have a nonzero value of Se(v) we need 

v < Aw, A~ ~_ 2v Af (C8) 

otherwise g~g~ ~"~0. The conditions (C6) and (C8) are implicitly con- 
tained in the work of Beck and Spruit. (18) Condition (C8) is quite natural 
since each data point for P(t) can be collected only in a time 6t >1 llano. 
(1/A~0 is also the correlation time of the sampled Johnson noise.) Since the 

then, 

= f ~  dt e"~~ V(t)) (C4) Sv(wo) 

To obtain Eq. (C3), we have assumed that Sv(w ) is slowly varying over the 
width of the filter A f: 

2~T [ g,~]2~_ 2Af  (C5) 

Note that g_,~ = g*. 
The power spectrum Sp(v) of the random variable P(t) is defined by 

an equation analogous to Eq. (C4). If, 

v At << 1, (1 /At  ~< ~0) (C6) 
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fastest Fourier component we can measure from these data points has a 
frequency u ~< 1/6t, the condition (C8) follows. Note that condition (C6) 
(P < ~0) is automatically satisfied if (C8) is satisfied and 2xw < co 0. If 
2x~0 > ~0 o then l, < Wo is a stronger restriction than Eq. (C8). The inequality 
p < co o comes about because in Eq. (C2) each point is an average over a 
time At. This averaging is quite natural since it eliminates high frequencies 
from Eq. (C2). This averaging does not, however, appear essential to us 
since At = 0 is consistent with vat<< 1 and Eq. (C7) follows even if 
l /At  > ~o. There may thus be cases where the Voss and Clarke experiment 
works even if p > o~ 0. 

If V is a Gaussian random variable, the average in Eq. (C7) may be 
evaluated. Using Eq. (C3) and the usual Gaussian decomposition we find 

sAP) 1 
( e ) 2  --  Af (C9) 

In general, this "Gaussian background" is unavoidable. Since each point 
P(t) can be taken as an "estimate" of the "true" Johnson noise power Eq. 
(C3), Eq. (C9) can be interpreted as being simply due to the "sampling" 
error of each estimate. Voss's and Clarke's conjecture is that the non- 
Gaussian component of the voltage fluctuations can be estimated from 

sap) sR(p) 
(ClO) 

( p ) 2  R 2 

where the right-hand side of this equation may be obtained from a 
standard 1 / f  noise experiment. The one experiment of Beck and Spruit on 
carbon resistors and those of Voss and Clarke on Nb and InSb agree with 
Eqs. (C9) and (C10). The background in the InSb experiment is larger than 
the one which can be computed from Eq. (C9) because one of the 
amplifiers had a smaller bandwidth than that of the original filtered 
Johnson noise. (19) 

Finally, note that Eq. (C7) may be written as a weighted average of 
correlation functions of the form of Eq. (7) as quoted in the text. Recalling 
that Eq. (C10) is proportional to the inverse of the size of the system, we 
also see by comparison of Eqs. (C9) and (C10) that the non-Gaussian 
effects we are looking at are of higher order in an expansion in powers of 
the inverse of the volume of the system. 
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